Overview
CELO Balance
More Info
ContractCreator
Multichain Info
Latest 25 from a total of 70,680 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Relay | 32932371 | 57 secs ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32932310 | 1 min ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32932252 | 2 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32932188 | 4 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32932132 | 4 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32932071 | 5 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32932017 | 6 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931954 | 7 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931888 | 9 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931831 | 9 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931770 | 10 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931712 | 11 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931650 | 12 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931602 | 13 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931528 | 15 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931469 | 15 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931409 | 16 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931349 | 17 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931288 | 19 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931229 | 19 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931169 | 20 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931108 | 22 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32931049 | 22 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32930989 | 23 mins ago | IN | 0 CELO | 0.00475749 | ||||
Relay | 32930929 | 24 mins ago | IN | 0 CELO | 0.00475749 |
Latest 25 internal transactions (View All)
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
32932371 | 57 secs ago | 0 CELO | ||||
32932371 | 57 secs ago | 0 CELO | ||||
32932371 | 57 secs ago | 0 CELO | ||||
32932371 | 57 secs ago | 0 CELO | ||||
32932371 | 57 secs ago | 0 CELO | ||||
32932371 | 57 secs ago | 0 CELO | ||||
32932310 | 1 min ago | 0 CELO | ||||
32932310 | 1 min ago | 0 CELO | ||||
32932310 | 1 min ago | 0 CELO | ||||
32932310 | 1 min ago | 0 CELO | ||||
32932310 | 1 min ago | 0 CELO | ||||
32932310 | 1 min ago | 0 CELO | ||||
32932252 | 2 mins ago | 0 CELO | ||||
32932252 | 2 mins ago | 0 CELO | ||||
32932252 | 2 mins ago | 0 CELO | ||||
32932252 | 2 mins ago | 0 CELO | ||||
32932252 | 2 mins ago | 0 CELO | ||||
32932252 | 2 mins ago | 0 CELO | ||||
32932188 | 4 mins ago | 0 CELO | ||||
32932188 | 4 mins ago | 0 CELO | ||||
32932188 | 4 mins ago | 0 CELO | ||||
32932188 | 4 mins ago | 0 CELO | ||||
32932188 | 4 mins ago | 0 CELO | ||||
32932188 | 4 mins ago | 0 CELO | ||||
32932132 | 4 mins ago | 0 CELO |
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x8b1789b8...fc2fe2617 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.18; import "../interfaces/IChainlinkRelayer.sol"; import "foundry-chainlink-toolkit/src/interfaces/feeds/AggregatorV3Interface.sol"; import { UD60x18, ud, intoUint256 } from "prb/math/UD60x18.sol"; /** * @notice The minimal subset of the SortedOracles interface needed by the * relayer. * @dev SortedOracles is a Solidity 5.13 contract, thus we can't import the * interface directly, so we use a minimal hand-copied one. * See https://github.com/mento-protocol/mento-core/blob/develop/contracts/common/SortedOracles.sol */ interface ISortedOraclesMin { function report( address rateFeedId, uint256 value, address lesserKey, address greaterKey ) external; function getRates(address rateFeedId) external returns ( address[] memory, uint256[] memory, uint256[] memory ); function medianTimestamp(address rateFeedId) external view returns (uint256); function getTokenReportExpirySeconds(address rateFeedId) external view returns (uint256); function removeExpiredReports(address rateFeedId, uint256 n) external; } /** * @title ChainlinkRelayer * @notice The ChainlinkRelayer relays rate feed data from a Chainlink price feed, or * an aggregation of multiple Chainlink price feeds to the SortedOracles contract. * A separate instance should be deployed for each rate feed. * @dev Assumes that it is the only reporter for the given SortedOracles feed. * This contract aggregates multiple Chainlink price feeds in order to provide derived rate feeds * to the rest of the protocol. This is needed because it is more efficient for oracle providers * to report FX rates against the dollar and crypto-asset rates against the dollar, * instead of all possible combinations. * For example, for the Philippine Peso, Chainlink reports PHP/USD, but does not report CELO/PHP * which is required to pay for gas in a PHP stable token. But using both PHP/USD and CELO/USD, * one can create a path: CELO/USD * inverse(PHP/USD) = CELO/PHP. * Because of this we can provide up to four Chainlink price sources with inversion settings * to the relayer, a price path. The path segments are chained through multiplication and * inversion to derive the rate. */ contract ChainlinkRelayerV1 is IChainlinkRelayer { /** * @notice The number of digits after the decimal point in FixidityLib values, as used by SortedOracles. * @dev See contracts/common/FixidityLib.sol */ uint256 private constant UD60X18_TO_FIXIDITY_SCALE = 1e6; // 10 ** (24 - 18) /// @notice The rateFeedId this relayer relays for. address public immutable rateFeedId; /// @notice The address of the SortedOracles contract to report to. address public immutable sortedOracles; /** * @dev We store an array of up to four IChainlinkRelayer.ChainlinkAggregator structs * in the following immutable variables. * aggregator<i> stores the i-th ChainlinkAggregator.aggregator member. * invert<i> stores the i-th ChainlinkAggregator.invert member. * aggregatorCount stores the length of the array. * These are built back up into an in-memory array in the buildAggregatorArray function. */ /// @notice The addresses of the Chainlink aggregators this contract fetches data from. address private immutable aggregator0; address private immutable aggregator1; address private immutable aggregator2; address private immutable aggregator3; /// @notice The invert setting for each aggregator, if true it flips the rate feed, i.e. CELO/USD -> USD/CELO. bool private immutable invert0; bool private immutable invert1; bool private immutable invert2; bool private immutable invert3; /// @notice The number of aggregators provided during construction 1 <= aggregatorCount <= 4. uint256 private immutable aggregatorCount; /** * @notice Maximum timestamp deviation allowed between all report timestamps pulled * from the Chainlink aggregators. * @dev Only relevant when aggregatorCount > 1. */ uint256 public immutable maxTimestampSpread; /** * @notice Human-readable description of the rate feed. * @dev Should only be used off-chain for easier debugging / UI generation, * thus the only storage related gas spend occurs in the constructor. */ string public rateFeedDescription; /// @notice Used when an empty array of aggregators is passed into the constructor. error NoAggregators(); /// @notice Used when more than four aggregators are passed into the constructor. error TooManyAggregators(); /// @notice Used when there are more then 1 aggregators and the maxTimestampSpread is 0, /// amd when there is only 1 aggregator and the maxTimestampSpread is not 0. error InvalidMaxTimestampSpread(); /// @notice Used when a new price's timestamp is not newer than the most recent SortedOracles timestamp. error TimestampNotNew(); /// @notice Used when a new price's timestamp would be considered expired by SortedOracles. error ExpiredTimestamp(); /// @notice Used when a negative or zero price is returned by the Chainlink aggregator. error InvalidPrice(); /** * @notice Used when the spread between the earliest and latest timestamp * of the aggregators is above the maximum allowed. */ error TimestampSpreadTooHigh(); /** * @notice Used when trying to recover from a lesser/greater revert and there are * too many existing reports in SortedOracles. */ error TooManyExistingReports(); /** * @notice Used in the constructor when a ChainlinkAggregator * has address(0) for an aggregator. */ error InvalidAggregator(); /** * @notice Initializes the contract and sets immutable parameters. * @param _rateFeedId ID of the rate feed this relayer instance relays for. * @param _rateFeedDescription The human-readable description of the reported rate feed. * @param _sortedOracles Address of the SortedOracles contract to relay to. * @param _maxTimestampSpread Max difference in milliseconds between the earliest and * latest timestamp of all aggregators in the price path. * @param _aggregators Array of ChainlinkAggregator structs defining the price path. */ constructor( address _rateFeedId, string memory _rateFeedDescription, address _sortedOracles, uint256 _maxTimestampSpread, ChainlinkAggregator[] memory _aggregators ) { rateFeedId = _rateFeedId; sortedOracles = _sortedOracles; maxTimestampSpread = _maxTimestampSpread; rateFeedDescription = _rateFeedDescription; aggregatorCount = _aggregators.length; if (aggregatorCount == 0) { revert NoAggregators(); } if (aggregatorCount > 4) { revert TooManyAggregators(); } if ((aggregatorCount > 1 && _maxTimestampSpread == 0) || (aggregatorCount == 1 && _maxTimestampSpread != 0)) { revert InvalidMaxTimestampSpread(); } ChainlinkAggregator[] memory aggregators = new ChainlinkAggregator[](4); for (uint256 i = 0; i < _aggregators.length; i++) { if (_aggregators[i].aggregator == address(0)) { revert InvalidAggregator(); } aggregators[i] = _aggregators[i]; } aggregator0 = aggregators[0].aggregator; aggregator1 = aggregators[1].aggregator; aggregator2 = aggregators[2].aggregator; aggregator3 = aggregators[3].aggregator; invert0 = aggregators[0].invert; invert1 = aggregators[1].invert; invert2 = aggregators[2].invert; invert3 = aggregators[3].invert; } /** * @notice Get the Chainlink aggregators and their invert settings. * @return An array of ChainlinkAggregator segments that compose the price path. */ function getAggregators() external view returns (ChainlinkAggregator[] memory) { return buildAggregatorArray(); } /** * @notice Relays data from the configured Chainlink aggregator to SortedOracles. * @dev Checks the price is non-negative (Chainlink uses `int256` rather than `uint256`. * @dev Converts the price to a Fixidity value, as expected by SortedOracles. * @dev Performs checks on the timestamp, will revert if any fails: * - The most recent Chainlink timestamp should be strictly newer than the most * recent timestamp in SortedOracles. * - The most recent Chainlink timestamp should not be considered expired by SortedOracles. * - The spread between aggregator timestamps is less than the maxTimestampSpread. */ function relay() external { ISortedOraclesMin _sortedOracles = ISortedOraclesMin(sortedOracles); ChainlinkAggregator[] memory aggregators = buildAggregatorArray(); (UD60x18 report, uint256 timestamp) = readChainlinkAggregator(aggregators[0]); uint256 oldestChainlinkTs = timestamp; uint256 newestChainlinkTs = timestamp; UD60x18 nextReport; for (uint256 i = 1; i < aggregators.length; i++) { (nextReport, timestamp) = readChainlinkAggregator(aggregators[i]); report = report.mul(nextReport); oldestChainlinkTs = timestamp < oldestChainlinkTs ? timestamp : oldestChainlinkTs; newestChainlinkTs = timestamp > newestChainlinkTs ? timestamp : newestChainlinkTs; } if (newestChainlinkTs - oldestChainlinkTs > maxTimestampSpread) { revert TimestampSpreadTooHigh(); } uint256 lastReportTs = _sortedOracles.medianTimestamp(rateFeedId); if (lastReportTs > 0 && newestChainlinkTs <= lastReportTs) { revert TimestampNotNew(); } if (isTimestampExpired(newestChainlinkTs)) { revert ExpiredTimestamp(); } reportRate(intoUint256(report) * UD60X18_TO_FIXIDITY_SCALE); } /** * @notice Report by looking up existing reports and building the lesser and greater keys. * @dev Depending on the state in SortedOracles we can be in the: * - Happy path: No reports, or a single report from this relayer. * We can report with lesser and greater keys as address(0) * - Unhappy path: There are reports from other oracles. * We restrain this path by only computing lesser and greater keys when there is * at most one report from a different oracle. * We also attempt to expire reports in order to get back to the happy path. * @param rate The rate to report. */ function reportRate(uint256 rate) internal { (address[] memory oracles, uint256[] memory rates, ) = ISortedOraclesMin(sortedOracles).getRates(rateFeedId); uint256 numRates = oracles.length; if (numRates == 0 || (numRates == 1 && oracles[0] == address(this))) { // Happy path: SortedOracles is empty, or there is a single report from this relayer. ISortedOraclesMin(sortedOracles).report(rateFeedId, rate, address(0), address(0)); return; } if (numRates > 2 || (numRates == 2 && oracles[0] != address(this) && oracles[1] != address(this))) { revert TooManyExistingReports(); } // At this point we have ensured that either: // - There is a single report from another oracle. // - There are two reports and one is from this relayer. address otherOracle; uint256 otherRate; if (numRates == 1 || oracles[0] != address(this)) { otherOracle = oracles[0]; otherRate = rates[0]; } else { otherOracle = oracles[1]; otherRate = rates[1]; } address lesserKey; address greaterKey; if (otherRate < rate) { lesserKey = otherOracle; } else { greaterKey = otherOracle; } ISortedOraclesMin(sortedOracles).report(rateFeedId, rate, lesserKey, greaterKey); ISortedOraclesMin(sortedOracles).removeExpiredReports(rateFeedId, 1); } /** * @notice Read and validate a Chainlink report from an aggregator. * It inverts the value if necessary. * @return price UD60x18 report value. * @return timestamp uint256 timestamp of the report. */ function readChainlinkAggregator(ChainlinkAggregator memory aggCfg) internal view returns (UD60x18, uint256) { (, int256 _price, , uint256 timestamp, ) = AggregatorV3Interface(aggCfg.aggregator).latestRoundData(); if (_price <= 0) { revert InvalidPrice(); } UD60x18 price = chainlinkToUD60x18(_price, aggCfg.aggregator); if (aggCfg.invert) { price = price.inv(); } return (price, timestamp); } /** * @notice Compose immutable variables into an in-memory array for better handling. * @return aggregators An array of ChainlinkAggregator structs. */ function buildAggregatorArray() internal view returns (ChainlinkAggregator[] memory aggregators) { aggregators = new ChainlinkAggregator[](aggregatorCount); unchecked { aggregators[0] = ChainlinkAggregator(aggregator0, invert0); if (aggregatorCount > 1) { aggregators[1] = ChainlinkAggregator(aggregator1, invert1); if (aggregatorCount > 2) { aggregators[2] = ChainlinkAggregator(aggregator2, invert2); if (aggregatorCount > 3) { aggregators[3] = ChainlinkAggregator(aggregator3, invert3); } } } } } /** * @notice Checks if a Chainlink price's timestamp would be expired in SortedOracles. * @param timestamp The timestamp returned by the Chainlink aggregator. * @return `true` if expired based on SortedOracles expiry parameter. */ function isTimestampExpired(uint256 timestamp) internal view returns (bool) { return block.timestamp - timestamp >= ISortedOraclesMin(sortedOracles).getTokenReportExpirySeconds(rateFeedId); } /** * @notice Converts a Chainlink price to a UD60x18 value. * @param price A price from the Chainlink aggregator. * @return The converted UD60x18 value. */ function chainlinkToUD60x18(int256 price, address aggregator) internal view returns (UD60x18) { uint256 chainlinkDecimals = uint256(AggregatorV3Interface(aggregator).decimals()); return ud(uint256(price) * 10**(18 - chainlinkDecimals)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; /// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not /// always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Emitted when the ending result in the fixed-point version of `mulDiv` would overflow uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Emitted when the ending result in `mulDiv` would overflow uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Emitted when attempting to run `mulDiv` with one of the inputs `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Emitted when the ending result in the signed version of `mulDiv` would overflow int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value an uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value an uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev How many trailing decimals can be represented. uint256 constant UNIT = 1e18; /// @dev Largest power of two that is a divisor of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /// @dev The `UNIT` number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// /// Each of the steps in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is swapped with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// A list of the Yul instructions used below: /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as an uint256. function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly ("memory-safe") { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of `mulDiv` with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if `(x * y) % UNIT >= HALF_UNIT`. Without this adjustment, 6.6e-19 would be truncated to 0 /// instead of being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; to understand how this works, see the NatSpec comments in `mulDiv`. /// - It is assumed that the result can never be `type(uint256).max` when x and y solve the following two equations: /// 1. x * y = type(uint256).max * UNIT /// 2. (x * y) % UNIT >= UNIT / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } assembly ("memory-safe") { result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of `mulDiv` for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be `type(int256).min`. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 absX; uint256 absY; uint256 absD; unchecked { absX = x < 0 ? uint256(-x) : uint256(x); absY = y < 0 ? uint256(-y) : uint256(y); absD = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(absX, absY, absD); if (rAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // This works thanks to two's complement. // "sgt" stands for "signed greater than" and "sub(0,1)" is max uint256. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function prbExp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Calculates the square root of x, rounding down if x is not a perfect square. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// Credits to OpenZeppelin for the explanations in code comments below. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function prbSqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$ and we get: // // $$ // k = log_2(x) // $$ // // Thus we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2}` is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Round down the result in case x is not a perfect square. uint256 roundedDownResult = x / result; if (result >= roundedDownResult) { result = roundedDownResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { MAX_UINT128, MAX_UINT40, msb, mulDiv, mulDiv18, prbExp2, prbSqrt } from "../Common.sol"; import { uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, ZERO } from "./Constants.sol"; import { PRBMath_SD59x18_Abs_MinSD59x18, PRBMath_SD59x18_Ceil_Overflow, PRBMath_SD59x18_Div_InputTooSmall, PRBMath_SD59x18_Div_Overflow, PRBMath_SD59x18_Exp_InputTooBig, PRBMath_SD59x18_Exp2_InputTooBig, PRBMath_SD59x18_Floor_Underflow, PRBMath_SD59x18_Gm_Overflow, PRBMath_SD59x18_Gm_NegativeProduct, PRBMath_SD59x18_Log_InputTooSmall, PRBMath_SD59x18_Mul_InputTooSmall, PRBMath_SD59x18_Mul_Overflow, PRBMath_SD59x18_Powu_Overflow, PRBMath_SD59x18_Sqrt_NegativeInput, PRBMath_SD59x18_Sqrt_Overflow } from "./Errors.sol"; import { unwrap, wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculate the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); if (xInt == uMIN_SD59x18) { revert PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y, rounding towards zero. /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = unwrap(x); int256 yInt = unwrap(y); unchecked { // This is equivalent to "x / 2 + y / 2" but faster. // This operation can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, we add 1 to the result, since shifting negative numbers to the right rounds // down to infinity. The right part is equivalent to "sum + (x % 2 == 1 || y % 2 == 1)" but faster. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // We need to add 1 if both x and y are odd to account for the double 0.5 remainder that is truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole SD59x18 number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The least number greater than or equal to x, as an SD59x18 number. function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); if (xInt > uMAX_WHOLE_SD59x18) { revert PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. Rounds towards zero. /// /// @dev This is a variant of `mulDiv` that works with signed numbers. Works by computing the signs and the absolute values /// separately. /// /// Requirements: /// - All from `Common.mulDiv`. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator cannot be zero. /// - The result must fit within int256. /// /// Caveats: /// - All from `Common.mulDiv`. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = unwrap(x); int256 yInt = unwrap(y); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT)÷y. The resulting value must fit within int256. uint256 resultAbs = mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign. This works thanks to two's complement; the left-most bit is the sign bit. bool sameSign = (xInt ^ yInt) > -1; // If the inputs don't have the same sign, the result should be negative. Otherwise, it should be positive. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// Requirements: /// - All from `log2`. /// - x must be less than 133.084258667509499441. /// /// Caveats: /// - All from `exp2`. /// - For any x less than -41.446531673892822322, the result is zero. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); // Without this check, the value passed to `exp2` would be less than -59.794705707972522261. if (xInt < -41_446531673892822322) { return ZERO; } // Without this check, the value passed to `exp2` would be greater than 192. if (xInt >= 133_084258667509499441) { revert PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Do the fixed-point multiplication inline to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev Based on the formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within `MAX_SD59x18`. /// /// Caveats: /// - For any x less than -59.794705707972522261, the result is zero. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); if (xInt < 0) { // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Do the fixed-point inversion $1/2^x$ inline to save gas. 1e36 is UNIT * UNIT. result = wrap(1e36 / unwrap(exp2(wrap(-xInt)))); } } else { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (xInt >= 192e18) { revert PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to convert the result to int256 with no checks because the maximum input allowed in this function is 192. result = wrap(int256(prbExp2(x_192x64))); } } } /// @notice Yields the greatest whole SD59x18 number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest integer less than or equal to x, as an SD59x18 number. function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); if (xInt < uMIN_WHOLE_SD59x18) { revert PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(unwrap(x) % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within `MAX_SD59x18`, lest it overflows. /// - x * y must not be negative, since this library does not handle complex numbers. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = unwrap(x); int256 yInt = unwrap(y); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to "xy / x != y". Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since this library does not handle complex numbers. if (xyInt < 0) { revert PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product had picked up a factor of `UNIT` // during multiplication. See the comments within the `prbSqrt` function. uint256 resultUint = prbSqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. function inv(SD59x18 x) pure returns (SD59x18 result) { // 1e36 is UNIT * UNIT. result = wrap(1e36 / unwrap(x)); } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e}$$. /// $$ /// /// Requirements: /// - All from `log2`. /// /// Caveats: /// - All from `log2`. /// - This doesn't return exactly 1 for 2.718281828459045235, for that more fine-grained precision is needed. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. function ln(SD59x18 x) pure returns (SD59x18 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 195.205294292027477728. result = wrap((unwrap(log2(x)) * uUNIT) / uLOG2_E); } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// Requirements: /// - All from `log2`. /// /// Caveats: /// - All from `log2`. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); if (xInt < 0) { revert PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the assembly mul operation, not the SD59x18 `mul`. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (unwrap(result) == uMAX_SD59x18) { unchecked { // Do the fixed-point division inline to save gas. result = wrap((unwrap(log2(x)) * uUNIT) / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than zero. /// /// Caveats: /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); if (xInt <= 0) { revert PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { // This works because of: // // $$ // log_2{x} = -log_2{\frac{1}{x}} // $$ int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Do the fixed-point inversion inline to save gas. The numerator is UNIT * UNIT. xInt = 1e36 / xInt; } // Calculate the integer part of the logarithm and add it to the result and finally calculate $y = x * 2^(-n)$. uint256 n = msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is maximum 255, UNIT is 1e18 and sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // This is $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is 1, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is $y^2 > 2$ and so in the range [2,4)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev This is a variant of `mulDiv` that works with signed numbers and employs constant folding, i.e. the denominator /// is always 1e18. /// /// Requirements: /// - All from `Common.mulDiv18`. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit within `MAX_SD59x18`. /// /// Caveats: /// - To understand how this works in detail, see the NatSpec comments in `Common.mulDivSigned`. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = unwrap(x); int256 yInt = unwrap(y); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } uint256 resultAbs = mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign. This works thanks to two's complement; the left-most bit is the sign bit. bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be negative. Otherwise, it should be positive. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y. /// /// @dev Based on the formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// Requirements: /// - All from `exp2`, `log2` and `mul`. /// - x cannot be zero. /// /// Caveats: /// - All from `exp2`, `log2` and `mul`. /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = unwrap(x); int256 yInt = unwrap(y); if (xInt == 0) { result = yInt == 0 ? UNIT : ZERO; } else { if (yInt == uUNIT) { result = x; } else { result = exp2(mul(log2(x), y)); } } } /// @notice Raises x (an SD59x18 number) to the power y (unsigned basic integer) using the famous algorithm /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - All from `abs` and `Common.mulDiv18`. /// - The result must fit within `MAX_SD59x18`. /// /// Caveats: /// - All from `Common.mulDiv18`. /// - Assumes 0^0 is 1. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as an uint256. /// @return result The result as an SD59x18 number. function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(unwrap(abs(x))); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = mulDiv18(xAbs, xAbs); // Equivalent to "y % 2 == 1" but faster. if (yAux & 1 > 0) { resultAbs = mulDiv18(resultAbs, xAbs); } } // The result must fit within `MAX_SD59x18`. if (resultAbs > uint256(uMAX_SD59x18)) { revert PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent an odd number? int256 resultInt = int256(resultAbs); bool isNegative = unwrap(x) < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x, rounding down. Only the positive root is returned. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x cannot be negative, since this library does not handle complex numbers. /// - x must be less than `MAX_SD59x18` divided by `UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = unwrap(x); if (xInt < 0) { revert PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` that is picked up when multiplying two SD59x18 // numbers together (in this case, the two numbers are both the square root). uint256 resultUint = prbSqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { msb, mulDiv, mulDiv18, prbExp2, prbSqrt } from "../Common.sol"; import { unwrap, wrap } from "./Casting.sol"; import { uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, ZERO } from "./Constants.sol"; import { PRBMath_UD60x18_Ceil_Overflow, PRBMath_UD60x18_Exp_InputTooBig, PRBMath_UD60x18_Exp2_InputTooBig, PRBMath_UD60x18_Gm_Overflow, PRBMath_UD60x18_Log_InputTooSmall, PRBMath_UD60x18_Sqrt_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y, rounding down. /// /// @dev Based on the formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ // /// In English, what this formula does is: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @param x The first operand as an UD60x18 number. /// @param y The second operand as an UD60x18 number. /// @return result The arithmetic average as an UD60x18 number. function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); uint256 yUint = unwrap(y); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole UD60x18 number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are "1e18 - 1" fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The least number greater than or equal to x, as an UD60x18 number. function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); if (xUint > uMAX_WHOLE_UD60x18) { revert PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to "x % UNIT" but faster. let remainder := mod(x, uUNIT) // Equivalent to "UNIT - remainder" but faster. let delta := sub(uUNIT, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. Rounds towards zero. /// /// @dev Uses `mulDiv` to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an UD60x18 number. /// @param y The denominator as an UD60x18 number. /// @param result The quotient as an UD60x18 number. function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(mulDiv(unwrap(x), uUNIT, unwrap(y))); } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// Requirements: /// - All from `log2`. /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an UD60x18 number. /// @return result The result as an UD60x18 number. function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); // Without this check, the value passed to `exp2` would be greater than 192. if (xUint >= 133_084258667509499441) { revert PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // We do the fixed-point multiplication inline rather than via the `mul` function to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within `MAX_UD60x18`. /// /// @param x The exponent as an UD60x18 number. /// @return result The result as an UD60x18 number. function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); // Numbers greater than or equal to 2^192 don't fit within the 192.64-bit format. if (xUint >= 192e18) { revert PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the `prbExp2` function, which uses the 192.64-bit fixed-point number representation. result = wrap(prbExp2(x_192x64)); } /// @notice Yields the greatest whole UD60x18 number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest integer less than or equal to x, as an UD60x18 number. function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to "x % UNIT" but faster. let remainder := mod(x, uUNIT) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as an UD60x18 number. function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $$sqrt(x * y)$$, rounding down. /// /// @dev Requirements: /// - x * y must fit within `MAX_UD60x18`, lest it overflows. /// /// @param x The first operand as an UD60x18 number. /// @param y The second operand as an UD60x18 number. /// @return result The result as an UD60x18 number. function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); uint256 yUint = unwrap(y); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product had picked up a factor of `UNIT` // during multiplication. See the comments in the `prbSqrt` function. result = wrap(prbSqrt(xyUint)); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as an UD60x18 number. function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { // 1e36 is UNIT * UNIT. result = wrap(1e36 / unwrap(x)); } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e}$$. /// $$ /// /// Requirements: /// - All from `log2`. /// /// Caveats: /// - All from `log2`. /// - This doesn't return exactly 1 for 2.718281828459045235, for that more fine-grained precision is needed. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an UD60x18 number. function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // We do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value // that `log2` can return is 196.205294292027477728. result = wrap((unwrap(log2(x)) * uUNIT) / uLOG2_E); } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// Requirements: /// - All from `log2`. /// /// Caveats: /// - All from `log2`. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an UD60x18 number. function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); if (xUint < uUNIT) { revert PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the assembly multiplication operation, not the UD60x18 `mul`. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (unwrap(result) == uMAX_UD60x18) { unchecked { // Do the fixed-point division inline to save gas. result = wrap((unwrap(log2(x)) * uUNIT) / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to UNIT, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an UD60x18 number. function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); if (xUint < uUNIT) { revert PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm, add it to the result and finally calculate y = x * 2^(-n). uint256 n = msb(xUint / uUNIT); // This is the integer part of the logarithm as an UD60x18 number. The operation can't overflow because n // n is maximum 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // This is $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is 1, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The "delta.rshift(1)" part is equivalent to "delta /= 2", but shifting bits is faster. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 > 2 and so in the range [2,4)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// @dev See the documentation for the `Common.mulDiv18` function. /// @param x The multiplicand as an UD60x18 number. /// @param y The multiplier as an UD60x18 number. /// @return result The product as an UD60x18 number. function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(mulDiv18(unwrap(x), unwrap(y))); } /// @notice Raises x to the power of y. /// /// @dev Based on the formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// Requirements: /// - All from `exp2`, `log2` and `mul`. /// /// Caveats: /// - All from `exp2`, `log2` and `mul`. /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an UD60x18 number. /// @param y Exponent to raise x to, as an UD60x18 number. /// @return result x raised to power y, as an UD60x18 number. function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); uint256 yUint = unwrap(y); if (xUint == 0) { result = yUint == 0 ? UNIT : ZERO; } else { if (yUint == uUNIT) { result = x; } else { result = exp2(mul(log2(x), y)); } } } /// @notice Raises x (an UD60x18 number) to the power y (unsigned basic integer) using the famous algorithm /// "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within `MAX_UD60x18`. /// /// Caveats: /// - All from "Common.mulDiv18". /// - Assumes 0^0 is 1. /// /// @param x The base as an UD60x18 number. /// @param y The exponent as an uint256. /// @return result The result as an UD60x18 number. function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = unwrap(x); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { xUint = mulDiv18(xUint, xUint); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { resultUint = mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than `MAX_UD60x18` divided by `UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as an UD60x18 number. function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = unwrap(x); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` that is picked up when multiplying two UD60x18 // numbers together (in this case, the two numbers are both the square root). result = wrap(prbSqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { SD1x18 } from "./ValueType.sol"; /// @notice Emitted when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Emitted when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Emitted when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Emitted when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Emitted when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Emitted when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { UD2x18 } from "./ValueType.sol"; /// @notice Emitted when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Emitted when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { MAX_UINT40 } from "../Common.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { PRBMath_SD1x18_ToUD2x18_Underflow, PRBMath_SD1x18_ToUD60x18_Underflow, PRBMath_SD1x18_ToUint128_Underflow, PRBMath_SD1x18_ToUint256_Underflow, PRBMath_SD1x18_ToUint40_Overflow, PRBMath_SD1x18_ToUint40_Underflow } from "./Errors.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(MAX_UINT40))) { revert PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for the `wrap` function. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into the SD1x18 value type. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { SD59x18 } from "./ValueType.sol"; /// @notice Emitted when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Emitted when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Emitted when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Emitted when taking the natural exponent of a base greater than 133.084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Emitted when taking the binary exponent of a base greater than 192. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Emitted when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Emitted when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Emitted when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Emitted when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Emitted when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Emitted when raising a number to a power and hte intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Emitted when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { PRBMath_UD2x18_IntoSD1x18_Overflow, PRBMath_UD2x18_IntoUint40_Overflow } from "./Errors.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts an UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts an UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts an UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts an UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts an UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts an UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(MAX_UINT40)) { revert PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for the `wrap` function. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap an UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps an uint64 number into the UD2x18 value type. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { UD60x18 } from "./ValueType.sol"; /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Emitted when taking the natural exponent of a base greater than 133.084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Emitted when taking the binary exponent of a base greater than 192. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Emitted when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Emitted when trying to cast an UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Emitted when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Emitted when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { PRBMath_SD59x18_IntoSD1x18_Overflow, PRBMath_SD59x18_IntoSD1x18_Underflow, PRBMath_SD59x18_IntoUD2x18_Overflow, PRBMath_SD59x18_IntoUD2x18_Underflow, PRBMath_SD59x18_IntoUD60x18_Underflow, PRBMath_SD59x18_IntoUint128_Overflow, PRBMath_SD59x18_IntoUint128_Underflow, PRBMath_SD59x18_IntoUint256_Underflow, PRBMath_SD59x18_IntoUint40_Overflow, PRBMath_SD59x18_IntoUint40_Underflow } from "./Errors.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for the `unwrap` function. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for the `wrap` function. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for the `wrap` function. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into the SD59x18 value type. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { unwrap, wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(unwrap(x) + unwrap(y)); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(unwrap(x) & bits); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = unwrap(x) == unwrap(y); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = unwrap(x) > unwrap(y); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = unwrap(x) >= unwrap(y); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = unwrap(x) == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(unwrap(x) << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = unwrap(x) < unwrap(y); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = unwrap(x) <= unwrap(y); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(unwrap(x) % unwrap(y)); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = unwrap(x) != unwrap(y); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(unwrap(x) | unwrap(y)); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(unwrap(x) >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(unwrap(x) - unwrap(y)); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(unwrap(x) + unwrap(y)); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(unwrap(x) - unwrap(y)); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-unwrap(x)); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(unwrap(x) ^ unwrap(y)); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { PRBMath_UD60x18_IntoSD1x18_Overflow, PRBMath_UD60x18_IntoUD2x18_Overflow, PRBMath_UD60x18_IntoSD59x18_Overflow, PRBMath_UD60x18_IntoUint128_Overflow, PRBMath_UD60x18_IntoUint40_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts an UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts an UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts an UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts an UD60x18 number into uint128. /// @dev This is basically a functional alias for the `unwrap` function. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts an UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts an UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for the `wrap` function. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for the `wrap` function. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps an UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps an uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { unwrap, wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(unwrap(x) + unwrap(y)); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(unwrap(x) & bits); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = unwrap(x) == unwrap(y); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = unwrap(x) > unwrap(y); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = unwrap(x) >= unwrap(y); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = unwrap(x) == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(unwrap(x) << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = unwrap(x) < unwrap(y); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = unwrap(x) <= unwrap(y); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(unwrap(x) % unwrap(y)); } /// @notice Implements the not equal operation (!=) in the UD60x18 type function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = unwrap(x) != unwrap(y); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(unwrap(x) | unwrap(y)); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(unwrap(x) >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(unwrap(x) - unwrap(y)); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(unwrap(x) + unwrap(y)); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(unwrap(x) - unwrap(y)); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(unwrap(x) ^ unwrap(y)); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit amount that implies how many trailing decimals can be represented. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import "./Casting.sol" as C; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 decimals. /// The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity type int64. /// This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { C.intoSD59x18, C.intoUD2x18, C.intoUD60x18, C.intoUint256, C.intoUint128, C.intoUint40, C.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as an UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value an UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as an UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit amount that implies how many trailing decimals can be represented. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import "./Casting.sol" as C; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 decimals. /// The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity type uint64. /// This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { C.intoSD1x18, C.intoSD59x18, C.intoUD60x18, C.intoUint256, C.intoUint128, C.intoUint40, C.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { SD59x18 } from "./ValueType.sol"; /// NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev log2(10) as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev log2(e) as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit amount that implies how many trailing decimals can be represented. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import "./Casting.sol" as C; import "./Helpers.sol" as H; import "./Math.sol" as M; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 decimals. /// The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { C.intoInt256, C.intoSD1x18, C.intoUD2x18, C.intoUD60x18, C.intoUint256, C.intoUint128, C.intoUint40, C.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { M.abs, M.avg, M.ceil, M.div, M.exp, M.exp2, M.floor, M.frac, M.gm, M.inv, M.log10, M.log2, M.ln, M.mul, M.pow, M.powu, M.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { H.add, H.and, H.eq, H.gt, H.gte, H.isZero, H.lshift, H.lt, H.lte, H.mod, H.neq, H.or, H.rshift, H.sub, H.uncheckedAdd, H.uncheckedSub, H.uncheckedUnary, H.xor } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { UD60x18 } from "./ValueType.sol"; /// @dev Euler's number as an UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev log2(10) as an UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev log2(e) as an UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value an UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value an UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as an UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit amount that implies how many trailing decimals can be represented. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev Zero as an UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import "./Casting.sol" as C; import "./Helpers.sol" as H; import "./Math.sol" as M; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 decimals. /// The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { C.intoSD1x18, C.intoUD2x18, C.intoSD59x18, C.intoUint128, C.intoUint256, C.intoUint40, C.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { M.avg, M.ceil, M.div, M.exp, M.exp2, M.floor, M.frac, M.gm, M.inv, M.ln, M.log10, M.log2, M.mul, M.pow, M.powu, M.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { H.add, H.and, H.eq, H.gt, H.gte, H.isZero, H.lshift, H.lt, H.lte, H.mod, H.neq, H.or, H.rshift, H.sub, H.uncheckedAdd, H.uncheckedSub, H.xor } for UD60x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.13; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts an UD60x18 number to a simple integer by dividing it by `UNIT`. Rounds towards zero in the process. /// @dev Rounds down in the process. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18` divided by `UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } } /// @notice Alias for the `convert` function defined above. /// @dev Here for backward compatibility. Will be removed in V4. function fromUD60x18(UD60x18 x) pure returns (uint256 result) { result = convert(x); } /// @notice Alias for the `convert` function defined above. /// @dev Here for backward compatibility. Will be removed in V4. function toUD60x18(uint256 x) pure returns (UD60x18 result) { result = convert(x); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity >=0.5.13 <0.9; pragma experimental ABIEncoderV2; interface IChainlinkRelayer { /** * @notice Struct used to represent a segment in the price path. * @member aggregator The address of the Chainlink aggregator. * @member invert Wether to invert the aggregator's price feed, i.e. convert CELO/USD to USD/CELO. */ struct ChainlinkAggregator { address aggregator; bool invert; } function rateFeedId() external returns (address); function rateFeedDescription() external returns (string memory); function sortedOracles() external returns (address); function getAggregators() external returns (ChainlinkAggregator[] memory); function maxTimestampSpread() external returns (uint256); function relay() external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); }
{ "viaIR": true, "metadata": { "appendCBOR": true, "bytecodeHash": "none", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 10000 }, "evmVersion": "paris", "remappings": [ ":@chainlink/contracts/=lib/mento-core-develop/lib/foundry-chainlink-toolkit/lib/chainlink-brownie-contracts/contracts/src/", ":@openzeppelin/=lib/mento-core-develop/lib/foundry-chainlink-toolkit/lib/openzeppelin-contracts/", ":@prb/test/=lib/mento-core-develop/lib/prb-math/lib/prb-test/src/", ":celo-foundry/=lib/celo-foundry/src/", ":chainlink-brownie-contracts/=lib/mento-core-develop/lib/foundry-chainlink-toolkit/lib/chainlink-brownie-contracts/contracts/src/v0.6/vendor/@arbitrum/nitro-contracts/src/", ":contracts/=contracts/", ":ds-test/=lib/celo-foundry/lib/forge-std/lib/ds-test/src/", ":forge-std-next/=lib/forge-std-next/src/", ":forge-std/=lib/celo-foundry/lib/forge-std/src/", ":foundry-chainlink-toolkit/=lib/mento-core-develop/lib/foundry-chainlink-toolkit/", ":mento-core-2.0.0/=lib/mento-core-2.0.0/contracts/", ":mento-core-2.1.0/=lib/mento-core-2.1.0/contracts/", ":mento-core-2.2.0/=lib/mento-core-2.2.0/contracts/", ":mento-core-2.3.1/=lib/mento-core-2.3.1/contracts/", ":mento-core-2.4.0/=lib/mento-core-2.4.0/contracts/", ":mento-core-develop/=lib/mento-core-develop/contracts/", ":openzeppelin-contracts-next/=lib/mento-core-2.3.1/lib/openzeppelin-contracts-next/", ":openzeppelin-contracts-upgradeable/=lib/mento-core-2.3.1/lib/openzeppelin-contracts-upgradeable/", ":openzeppelin-contracts/=lib/mento-core-2.0.0/lib/openzeppelin-contracts/contracts/", ":openzeppelin-solidity/=lib/mento-core-2.0.0/lib/openzeppelin-contracts/", ":prb-math/=lib/mento-core-develop/lib/prb-math/src/", ":prb-test/=lib/mento-core-develop/lib/prb-math/lib/prb-test/src/", ":prb/math/=lib/mento-core-develop/lib/prb-math/src/", ":safe-contracts/=lib/mento-core-2.4.0/lib/safe-contracts/", ":src/=lib/mento-core-develop/lib/prb-math/src/", ":test/=lib/mento-core-2.0.0/test/" ], "libraries": { "lib/mento-core-2.0.0/contracts/common/linkedlists/AddressLinkedList.sol": { "AddressLinkedList": "0x2f0f7686fffefc3c266403ad600035581deaedff" }, "lib/mento-core-2.0.0/contracts/common/linkedlists/AddressSortedLinkedListWithMedian.sol": { "AddressSortedLinkedListWithMedian": "0x29b1b5e05217c751038861af2c77494eab10a257" } }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"inputs":[{"internalType":"address","name":"_rateFeedId","type":"address"},{"internalType":"string","name":"_rateFeedDescription","type":"string"},{"internalType":"address","name":"_sortedOracles","type":"address"},{"internalType":"uint256","name":"_maxTimestampSpread","type":"uint256"},{"components":[{"internalType":"address","name":"aggregator","type":"address"},{"internalType":"bool","name":"invert","type":"bool"}],"internalType":"struct IChainlinkRelayer.ChainlinkAggregator[]","name":"_aggregators","type":"tuple[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ExpiredTimestamp","type":"error"},{"inputs":[],"name":"InvalidAggregator","type":"error"},{"inputs":[],"name":"InvalidMaxTimestampSpread","type":"error"},{"inputs":[],"name":"InvalidPrice","type":"error"},{"inputs":[],"name":"NoAggregators","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[],"name":"TimestampNotNew","type":"error"},{"inputs":[],"name":"TimestampSpreadTooHigh","type":"error"},{"inputs":[],"name":"TooManyAggregators","type":"error"},{"inputs":[],"name":"TooManyExistingReports","type":"error"},{"inputs":[],"name":"getAggregators","outputs":[{"components":[{"internalType":"address","name":"aggregator","type":"address"},{"internalType":"bool","name":"invert","type":"bool"}],"internalType":"struct IChainlinkRelayer.ChainlinkAggregator[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTimestampSpread","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rateFeedDescription","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rateFeedId","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"relay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sortedOracles","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x608060408181526004918236101561001657600080fd5b600090813560e01c908163132e8aa71461067e5750806321b8929e146106435780637ee7f7d1146105c4578063a1bd91da14610573578063b59589d1146101ff5763e6f4c8651461006657600080fd5b346101fc57806003193601126101fc57815190808154600181811c9181811680156101f2575b60209889851082146101c65750918391899593889586529081600014610186575060011461012b575b50506100c7925095939295038261072d565b82519382859384528251928382860152825b84811061011557505050828201840152601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0168101030190f35b81810183015188820188015287955082016100d9565b8580527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5639492508591905b81831061016e5750889450508201016100c7386100b5565b85548884018501529485019487945091830191610156565b90506100c79593507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0091501682840152151560051b8201018692386100b5565b8660226024927f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b92607f169261008c565b80fd5b50903461056f578160031936011261056f5773ffffffffffffffffffffffffffffffffffffffff90817f000000000000000000000000fdd8bd58115ffbf04e47411c1d228ecc45e930751691610253610f02565b61026561025f8261076e565b51610ca9565b94909480926001809181925b6104bd575b50505061028390836107da565b7f000000000000000000000000000000000000000000000000000000000000000010610495578351927f071b48fc0000000000000000000000000000000000000000000000000000000084527f0000000000000000000000000196d1f4fda21fa442e53eaf18bf31282f6139f1169182888501526020938481602481865afa90811561048b57889161045a575b50801515908161044f575b506104275761032b8491426107da565b9260248651809481937f6deb67990000000000000000000000000000000000000000000000000000000083528c8301525afa92831561041d5786936103e9575b505010156103c15750620f4240908181029181830414901517156103955761039290610891565b80f35b5060116024927f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8390517fa3644e9f000000000000000000000000000000000000000000000000000000008152fd5b9080929350813d8311610416575b610401818361072d565b81010312610412575190388061036b565b8480fd5b503d6103f7565b84513d88823e3d90fd5b8785517fc175c1ae000000000000000000000000000000000000000000000000000000008152fd5b90508111153861031b565b90508481813d8311610484575b610471818361072d565b81010312610480575138610310565b8780fd5b503d610467565b86513d8a823e3d90fd5b8684517f5289d054000000000000000000000000000000000000000000000000000000008152fd5b90919492978151861015610567576104e66104e060208860051b85010151610ca9565b92611191565b98808210156105625750805b938082111561055b57505b947fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811461052f578201919081610271565b60248a60118d7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b90506104fd565b6104f2565b979294610276565b5080fd5b50903461056f578160031936011261056f576020905173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000196d1f4fda21fa442e53eaf18bf31282f6139f1168152f35b50903461056f578160031936011261056f576105de610f02565b8151928392602080850191818652845180935281818701950193905b8382106106075786860387f35b8451805173ffffffffffffffffffffffffffffffffffffffff1687528301511515868401528796509485019493820193600191909101906105fa565b50903461056f578160031936011261056f57602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b90503461056f578160031936011261056f5760209073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000fdd8bd58115ffbf04e47411c1d228ecc45e93075168152f35b67ffffffffffffffff81116106e257604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6040810190811067ffffffffffffffff8211176106e257604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176106e257604052565b80511561077b5760200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b80516001101561077b5760400190565b80516002101561077b5760600190565b80516003101561077b5760800190565b919082039182116107e757565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b67ffffffffffffffff81116106e25760051b60200190565b81601f8201121561088c5780519161084583610816565b92610853604051948561072d565b808452602092838086019260051b82010192831161088c578301905b82821061087d575050505090565b8151815290830190830161086f565b600080fd5b73ffffffffffffffffffffffffffffffffffffffff90817f000000000000000000000000fdd8bd58115ffbf04e47411c1d228ecc45e93075166040918251907f02f55b61000000000000000000000000000000000000000000000000000000008252600094807f0000000000000000000000000196d1f4fda21fa442e53eaf18bf31282f6139f11692836004820152868160248183895af1908115610c885787908892610bad575b50805180158015610b8e575b610b1c57600281118015610ae1575b610ab85760018491148015610aa3575b15610a885761097561097d9261076e565b51169161076e565b51905b8784899310600014610a8057505b853b156104805782908751947f80e507440000000000000000000000000000000000000000000000000000000086528660048701526024860152166044840152166064820152848160848183875af18015610a7657908591610a62575b5050813b15610a5e578291604485949285935195869384927fdd34ca3b0000000000000000000000000000000000000000000000000000000084526004840152600160248401525af1908115610a555750610a44575050565b610a4e82916106ce565b6101fc5750565b513d84823e3d90fd5b8380fd5b610a6b906106ce565b610a5e5783386109eb565b84513d87823e3d90fd5b91509061098e565b610a94610a9c926107aa565b5116916107aa565b5190610980565b5080610aae8361076e565b5116301415610964565b600488517f6d79d026000000000000000000000000000000000000000000000000000000008152fd5b506002811480610b07575b8015610954575083610afd836107aa565b5116301415610954565b5083610b128361076e565b5116301415610aec565b50505050908293923b1561041257906084859283855196879485937f80e50744000000000000000000000000000000000000000000000000000000008552600485015260248401528160448401528160648401525af1908115610a555750610b82575050565b610b8b906106ce565b50565b50600181148015610945575083610ba48361076e565b51163014610945565b9150503d8088833e610bbf818361072d565b81016060828203126104805781519067ffffffffffffffff91828111610c845783019181601f84011215610c84578251610bf881610816565b93610c058b51958661072d565b818552602091828087019160051b83010191858311610c80578301905b828210610c6457505050840151818111610c605782610c4291860161082e565b9389810151918211610c6057610c5992910161082e565b5038610939565b8a80fd5b81518981168103610c7c578152908301908301610c22565b8e80fd5b8d80fd5b8980fd5b86513d89823e3d90fd5b519069ffffffffffffffffffff8216820361088c57565b9073ffffffffffffffffffffffffffffffffffffffff9160a083825116604051918280927ffeaf968c00000000000000000000000000000000000000000000000000000000825260049384915afa948515610e78576000928396610eac575b506000831315610e845760208291855116604051928380927f313ce5670000000000000000000000000000000000000000000000000000000082525afa908115610e7857600091610e3c575b5060ff1660120360128111610e0e57604d8111610e0e57600a0a91828102928184041490151715610de057602082930151610d90575b50509190565b9080925015610db257506ec097ce7bc90715b34b9f1000000000043880610d8a565b6012907f4e487b71000000000000000000000000000000000000000000000000000000006000525260246000fd5b6011907f4e487b71000000000000000000000000000000000000000000000000000000006000525260246000fd5b6011827f4e487b71000000000000000000000000000000000000000000000000000000006000525260246000fd5b6020813d8211610e70575b81610e546020938361072d565b8101031261056f57519060ff821682036101fc575060ff610d54565b3d9150610e47565b6040513d6000823e3d90fd5b506040517ebfc921000000000000000000000000000000000000000000000000000000008152fd5b9290955060a0833d8211610efa575b81610ec860a0938361072d565b810103126101fc5750610eda82610c92565b506020820151610ef1608060608501519401610c92565b50919438610d08565b3d9150610ebb565b7f000000000000000000000000000000000000000000000000000000000000000190610f2d82610816565b604090610f3c8251918261072d565b8381527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610f6985610816565b016000805b82811061116f575050508093825190610f8682610711565b73ffffffffffffffffffffffffffffffffffffffff91827f0000000000000000000000008c07f12022fd7afc700a410a0f109dd349d89b491681527f000000000000000000000000000000000000000000000000000000000000000015156020820152610ff28461076e565b52610ffc8361076e565b506001811161100c575b50505050565b835161101781610711565b827f00000000000000000000000000000000000000000000000000000000000000001681527f00000000000000000000000000000000000000000000000000000000000000001515602082015261106d846107aa565b52611077836107aa565b50600281111561100657600390845161108f81610711565b837f00000000000000000000000000000000000000000000000000000000000000001681527f0000000000000000000000000000000000000000000000000000000000000000151560208201526110e5856107ba565b526110ef846107ba565b50116110fc575b80611006565b61116692519061110b82610711565b7f00000000000000000000000000000000000000000000000000000000000000001681527f000000000000000000000000000000000000000000000000000000000000000015156020820152611160826107ca565b526107ca565b503880806110f6565b602090855161117d81610711565b838152828481830152828701015201610f6e565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff818309818302918280831092039180830391670de0b6b3a7640000958684101561121c57908691099214611216577faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106699350828211900360ee1b910360121c170290565b50500490565b604491604051917f5173648d00000000000000000000000000000000000000000000000000000000835260048301526024820152fdfea164736f6c6343000812000a
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.